Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 4504808481 ### **CAMBRIDGE INTERNATIONAL MATHEMATICS** 0607/21 Paper 2 (Extended) May/June 2024 45 minutes You must answer on the question paper. You will need: Geometrical instruments ### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - Calculators must not be used in this paper. - You may use tracing paper. - You must show all necessary working clearly and you will be given marks for correct methods even if your answer is incorrect. - All answers should be given in their simplest form. ### **INFORMATION** - The total mark for this paper is 40. - The number of marks for each question or part question is shown in brackets []. This document has 8 pages. Any blank pages are indicated. ### Formula List For the equation $$ax^2 + bx + c = 0$$ $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Curved surface area, A, of cylinder of radius r, height h. $A = 2\pi rh$ Curved surface area, A, of cone of radius r, sloping edge l. $A = \pi r l$ Curved surface area, A, of sphere of radius r. $A = 4\pi r^2$ Volume, V, of pyramid, base area A, height h. $V = \frac{1}{3}Ah$ Volume, V, of cylinder of radius r, height h. $V = \pi r^2 h$ Volume, V, of cone of radius r, height h. $V = \frac{1}{3}\pi r^2 h$ Volume, V, of sphere of radius r. $$V = \frac{4}{3}\pi r^3$$ $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$ $$a^2 = b^2 + c^2 - 2bc \cos A$$ $$Area = \frac{1}{2}bc \sin A$$ ## Answer **all** the questions. | 1 | Work out. | | |---|--|--------------------| | | 2^4 | | | | | [1] | | | 12 | | | 2 | (a) Write $\frac{12}{25}$ as a percentage. | | | | | % [1] | | | (b) Work out. | | | | $\frac{2}{7} + \frac{4}{7}$ | | | | | F-1- | | | | [1] | | 3 | Simplify. | | | | 3x - 2y + x + y | | | | | | | | | [2] | | 4 | Change 270 mm ² into m ² . | | | | | | | | | m ² [1] | | | | | | 5 | Write down the value of 9^0 . | | | | | [1] | | | | | | 6 | Find the lowest common multiple (LCM) of 24 and 60. | | |---|--|---------| | 7 | Find the magnitude of $\begin{pmatrix} 9 \\ -3 \end{pmatrix}$.
Give your answer in its simplest surd form. | [2] | | 8 | Write in standard form. (a) 3706000 | [2] | | | (b) 0.001010 | [1] | | | |
[1] | 9 A is the point (1, 3) and B is the point (3, -7). The line l passes through A and is perpendicular to AB. | The table show | s the favou | rite colour (| of each of 80 |) people. | | | | |--|------------------------|---------------|---------------|--------------------|---------------|---------------|----------| | The table show | s the favou | rite colour o | of each of 80 |) people.
Green | Silver | Black | Yellow | | The table show Colour Frequency | | T | | I | Silver | Black 3 | Yellow x | | Colour
Frequency | Red 23 | Blue | White | Green | | | | | Colour | Red 23 | Blue | White | Green | | | | | Colour
Frequency | Red 23 | Blue | White | Green | | | | | Colour
Frequency | Red 23 | Blue | White | Green | 12 | 3 | | | Colour
Frequency | Red 23 alue of x . | Blue 17 | White 11 | Green
9 | 12 | 3 | x | | Colour Frequency (a) Find the variation | Red 23 alue of x . | Blue 17 | White 11 | Green
9 | 12 | 3 | x | | Colour Frequency (a) Find the variation | Red 23 alue of x . | Blue 17 | White 11 | Green
9 | 12 | 3 | x | | Colour Frequency (a) Find the variation | Red 23 alue of x . | Blue 17 | White 11 | Green
9 | 12 | 3 | x | | Colour Frequency (a) Find the variation | Red 23 alue of x . | Blue 17 | White 11 | Green
9 | as a fraction | n in its lowe | x | | 11 | (a) Simplify. $\sqrt{50} - \sqrt{8}$ | | |----|--|---------| | | (b) By rationalising the denominator, simplify $\frac{12}{\sqrt{7}-\sqrt{3}} \ .$ |
[2] | | 12 | Factorise completely. $x^3y^2 - xy$ |
[3] | | 13 | Sara has a bag containing 4 yellow balls and 5 white balls. Sara takes a ball from the bag at random without replacement. She then takes a second ball from the bag at random. Find the probability that the two balls are different colours. | [2] |[3] | 14 Make x the subject of the formula. | |---------------------------------------| |---------------------------------------| $$\frac{p}{x} = \frac{q}{x - 2}$$ $$x =$$ [3] 15 Simplify. $$1 + 3\log 2 - 2\log 3 - 2\log \frac{2}{3}$$ 16 Solve the equation. $$4(\cos x)^2 = 3 \quad \text{for} \quad 0^\circ \le x \le 360^\circ$$ $$x =$$ [3] © UCLES 2024 ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.